Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
Internet of Things

By 2016...

6.4B connected things¹

By 2019...

$1.3T worldwide spending on the Internet of Things²

By 2020...

20-50B Internet connected devices³

¹ Gartner Group http://www.gartner.com/newsroom/id/3165317
³ Gartner Group http://www.gartner.com/newsroom/id/3165317 & Cisco Virtual Networking Index
Data Demand

Growth from 2014-2019 expected to be 6-10X

5G is expected to provide 1,000 – 10,000x capacity gains

Source: FUTURE MOBILE SPECTRUM REQUIREMENTS, GSMA, 2015
The Next Mobile Era: Computing + Communications

SMART DEVICES

CLOUD AND DATA CENTER

Workloads Will be Shared & Coordinated
Smarter clients. Smarter networks
Smart Packet Processing, Network Offload, Data Analysis
5G End-to-End: Network and Device Transformation

Smart Devices

Radio Access Technology

Network infrastructure

Core Network

Cloud

- Small Cells
- C-RAN (Remote Radio Heads)
- Network Functions Virtualization
- SDN

5G

4G licensed + unlicensed

2G/3G Integrated heterogeneous connections

Cellular + WiFi

Integrated heterogeneous connections

Secure

Operating System

Hypervisor

- Compute
- Block Storage
- Network
Standards
Diverse Set of Competitive 5G Specifications Targeting 2019-2020
3GPP LTE-Advanced Pro (Rel-13+)

LTE-Advanced Pro

- Multi-site MIMO/beamforming
- Light-weight Protocols & Latency Reduction
- LSA, LAA, V2V/V2X Enhancements

5G Rate Contribution

- 80MHz – 40MHz Licensed + 40MHz 5GHz Unlicensed
- 160MHz – 40MHz Licensed + 40MHz 3.5GHz CBRS + 80MHz 5GHz Unlicensed
- Latency Reduction – HARQ and Frame Adjustments to Tackle Enhanced Latency

<table>
<thead>
<tr>
<th>Category</th>
<th>Max. DL Bandwidth (MHz)</th>
<th>Max. DL Rate (Mbps)</th>
<th>Max. UL Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>60</td>
<td>450</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>1050</td>
<td>150</td>
</tr>
</tbody>
</table>

Example LTE Categories

<table>
<thead>
<tr>
<th>Bandwidth (MHz)</th>
<th>Achievable Date Rate (Gbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1.6</td>
</tr>
<tr>
<td>160</td>
<td>3.2</td>
</tr>
</tbody>
</table>

LTE Achievable Data Rates

Enhancements in LTE can Approach 5G eMBB

Note 1: Assumptions: 4-Stream MIMO, 256-QAM
3GPP 5G New RAT

5G Phase 1
- Flexible OFDM numerology delivering peak data rate of 20 Gbps+
- Common support for sub-6 GHz to ~40 GHz
- Unified support for eMBB, looking forward to mMTC and uMTC
- Dynamic TDD/FDD, flexible frame structure supporting beamforming
- Cell virtualization, massive multi-site MIMO
- Tight interworking with LTE using new 5G core network

3GPP Rel-14/15

5G Phase 2
- Extend up to 100 GHz spectrum within same the unified flexible framework
- New waveform for mmWave spectrum
- In-band full duplex

3GPP Rel-16
Intel 5G Device (Concept)

Inter-RAT Connection Management
- WiFi Offloading
- Multi-RAT Aggregation

Multiple RATs (Radio Access Technologies)
- Evolution of LTE, HSPA, WiFi, BT basebands, addition of 5G RAT(s)

4G-5G Transition Impact
- High
- Medium
- Low

Auto Interference Suppression (AIS)
- Suppress inter-CA or GNSS harmonic and inter-RAT self-interference

Multi-Antenna Operation
- 4-Port+ Operation
- Multi-Band, Multi-RAT Port Sharing
- Active Impedance Matching

Multi-Band Support
- Variable Frequency Operation
- >40 LTE bands, >10 HSPA bands, plus WiFi, BT, GNSS bands
- 5G mm-wave (10-100GHz) Support

PA Efficiency
- Low power, low cost operation

Location Processing
- A-GNSS Computation
- Sensor Fusion

Advanced Baseband Signal Processing
- Blind co-channel suppression
- Multiple MIMO modes
- MU-MIMO co-scheduled interference suppression

Multiple GNSS Evolution
- Multiple waveforms – GPS, Glonass, Galileo, Beidou, IRNSS, Ancillary Terrestrial Systems

Advanced Sensors
- MEMS

Very Low Power Operation
- Advanced Power Management
- Delegated Cores

Media Cores
Application Cores
Comms Core
Location Core

PHY Processing
- GSM/EDGE
- WCDMA Rel-15
- BT 5.x
- GNSS
- LTE Rel-15
- WiFi – 802.11ax
- WiGig – 802.11ay
- “5G”

RF Proc
FEM
Low Frequency RF (<6GHz)

DSP

Sensors

RF

mm-Wave

Integration

Integration

cm- and mm-wave Antennas
- Low power, low cost operation

Note: Critical technologies indicated in red.
Intel 5G Mobile Trial Platform (MTP)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Advanced FPGA & RFIC</td>
</tr>
<tr>
<td>Carrier Frequency</td>
<td>27.0 ~ 29.5GHz & 3.4-5.9GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Up to 800 MHz (Progressive Q1-Q4'16)</td>
</tr>
<tr>
<td>MIMO</td>
<td>4-layers</td>
</tr>
<tr>
<td>Data Rate (Peak)</td>
<td>1.5-7.0Gbps (2016-17)</td>
</tr>
<tr>
<td>LTE Support</td>
<td>Yes – XMM7360</td>
</tr>
</tbody>
</table>

4 GHz and 28 GHz Discrete Transceiver: Q1’16
28 GHz RFIC Phased Array: Q2’16
MTP Phase 1 Visual