Special Article on Satellite Packet Communication Service
Operation and Maintenance Method

A Satellite Packet Processing Module (S-PPM) and Satellite Packet Modulation and Demodulation Equipment (SPMDE) have been developed for the current Satellite Mobile Packet Communication System. And a new Operation and Maintenance (OAM) method for monitoring and controlling this satellite system has also been developed.

This article outlines the operation of the satellite mobile packet communication system and describes the operation functions unique to its operation method.

Hiroshi Kubosawa and Keiko Yoshihara

1. Introduction


This article describes the functions unique to the satellite mobile packet communication method such as Satellite Base Station (SBS) monitoring and control function, sun transit control function, base station switchover control function, and test calling function.

2. Operation and Maintenance of the Network

Figure 1 shows the OPS configuration of the network system OAM method. The Satellite Packet Processing Module (S-PPM) is installed in each communication station office and connected with the satellite remote operation terminal installed in the operation center. The S-PPM is monitored and controlled from this satellite remote operation terminal. In addition, satellite site operation terminal collectively controls monitoring for equipment such as Router (RT) s. And the terminal has a function for transferring failure reports to the satellite remote operation terminal.

3. Operation Function Unique to the Satellite Mobile Packet Communication Method

3.1 Satellite Base Station (SBS) Monitoring and Control Function

Signals concerning from Satellite Packet Modulation and Demodulation Equipment (SPMDE) are transmitted and received at the S-PPM used in both call processing and monitoring control systems. Consequently, SPMDE can be monitored and controlled by registration of it into the satellite operation terminal, in the same way as network equipment. Additionally, alarms, etc. at the SPMDE can be displayed in real-time, and messages from the past few days can be retrieved and displayed. Furthermore, the SPMDE can be remote controlled by inputting commands and graphical user interface (GUI).

The SPMDE rack screen is shown in Photo 1 and the SPMDE card monitoring and control screen in Photo 2.

3.2 Sun-Transit Control Function

When a Base Station (BS), the satellite, and the sun align in a straight line before and after the vernal or autumnal equinox, communication is hindered because of sun-noise reception at the BS. Hence, the mobile station should migrate to an area under the control of a non-sun-transit satellite.

* sun-transit: When a BS, the satellite, and the sun align in a straight line before and after the vernal or autumnal equinox, return link communication becomes temporarily difficult because sun noise is also received at the BS.
In the Satellite Mobile Communication System, all mobile terminals that visit an area under the control of sun-transit satellite are forced to migrate into an area under the control of non-sun transit satellite. However, the Satellite Mobile Packet Communication System can control the migration of only Mobile Station (MS) s, which visit packet channels and transmit and receive data, into an area under the control of a non-sun transit satellite [3]. To put it concretely, when the forward link signals occurs, network initiative handover control is conducted. (Figure 2), and when the uplink signals occurs, the autonomous channel switchover of the mobile terminal is controlled (Figure 3).

The S-PPM has a function for controlling for SBS equipment and monitoring the control situation according to the sun-transit occurrence time. In this occasion, the sun transit occurrence time is implemented by setting it in office.
data and transferring it from satellite operation terminal to S-PPM.

3.3 Base Station (BS) Switchover Control Function

As a rule, the BS should be operated by the working system. However, the BS is switched to another by the standby system of the BS when a failure occurs at the working system of the BS. The procedure for this “BS switchover” is as follows.

1. Network initiation handover control” of the MS while it continues existing packet system in the relevant BS area is conducted.
BS switchover control in the existing Satellite Mobile Packet Communication System is executed.

3.4 Test Call Function

This function has been developed for tests on radio sections of the Satellite Mobile Packet Communication System. Since this test is conducted at the operation center, since beam 3 and 4 that can not be received at operation center, the test is possible by dubbing* of the relevant beam into beam 1 (Figure 4). In addition, since beams 1 and 2 can be received at the operation center, test calls can be done as no dubbing (Figure 5).

4. Conclusion

This article described the OAM method in the Satellite

---

* Network initiative handover control: Channel information under the control of another satellite is transmitted unit by unit to the MS, and it enables handover to the other satellite.
* Dubbing: Conduct communication up to beam by blowing beam 1 frequency into SPMDE for beam 3.

References

