

5G Evolution and 6G powered by IOWN

NTT DOCOMO, INC.

5G Evolution & 6G

Changing worlds with you.

Technologies for 5G Evolution and 6G

Technological development and research areas

Changing worlds with you.

docomo

Technologies for coverage extension

NTN/HAPSUnderwater acoustic communications

Coverage Extension with NTN

Changing worlds with you.

00 km 9 dB) nsec	1,000 km (160.7 dB) 3.3 msec	20 km (126.8 dB) 0.066 msec		
nsec	3.3 msec	0.066 msec		
	Many (need to support entire of earth)	Around 50		
(Example) Current DOCOMO's business case		 HAPS can support more business to cases with following benefits Higher data rate Lower latency Smaller terminals Flexibility of NW deployments 		
p ir	ectrum bands: 5/2.6GHz (FDD)	A business case bectrum bands: 5/2.6GHz (FDD) mited data rate bwnlink: 384 kbps		

Variety of Use Cases with HAPS

Changing worlds with you.

döcomo

 Effective for <u>many industrial use cases</u> in 5G evolution & 6G as well as <u>public</u> <u>safety</u>

Challenges of wireless technology

- Radio interface for long-distance
 communication
- Efficient frequency utilization scheme between HAPS and ground network
- Network design for efficient interworking between HAPS and ground network

HAPS simulator

■ HAPS simulator for airborne coverage

■ Newly added functions for uplink, UE direct link, and interference reduction

HAPS simulator for evaluating ultra-coverage performance

- After setting radio-communication parameters, the HAPS simulator calculates system capacity according to the communication environment on the ground.
- Communication parameters can be calculated for location-specific HAPS uses.

Simulator specifications (simplified version)

entralater epeentreatierie (entre	neu rererenj		
Parameter	Feeder link	Service link	fc=38GHz (BW=100MHz)
Frequency	38 (GHz	Application of interference
Bandwidth	≧100	OMHz	 avoidance technology HAPS does not beam
Transmission power	34 d	lBm	near ground gNB
Tx peak gain	50 dBi	30 dBi	
Rx peak gain	30 (dBi	
Pass loss model	Free space	e pass loss	
Rain attenuation	20 dB (i	if rainy)	UE connected to
Atmospheric absorption loss	1 (dB	ground gNB

Simulated collaboration between HAPS and terrestrial gNB

Copyright © 2022 NTT DOCOMO, INC. All Rights Reserved.

Changing worlds with you.

UE connected to HAPS

HAPS simulator

Changing worlds with you.

High-speed underwater acoustic communication docomo

- Coverage will be extended to undersea areas unexplored for high-speed wireless communications.
- Spatio-temporal equalization technology that compensates for severe waveform distortion undersea has achieved underwater acoustic communications of more than1 Mbit/s, enabling video transmissions from underwater drones.
- Current initiatives are focusing on bidirectional communication, improved stability and smaller, more powerefficient equipment, for achieving wireless remote control of underwater drones.

Positioning of our technology

Acoustic MIMO transmission

Terahertz frequency

■ 6G simulator

I6G Spectrum Extension

- 5G NR supports frequency bands up to 52.6 GHz, and extension to approximately 90 GHz for future release
- 6G exploits higher frequency bands than 5G such as "millimeter wave" and "terahertz wave" (~300 GHz), and remarkably wider bandwidth can achieve extreme high data rates exceeding 100 Gbps

6G simulator

Changing worlds with you.

- Real-time system simulator for evaluating ultra-high-speed 100 Gbps 6G communication
- Will support use of terahertz frequency such as 100 GHz, in addition to sub-6 and millimeter waves
- User throughput above 100 Gbps achieved in factory-simulation test using 100 GHz

Center frequency	100GHz
Bandwidth	8000MHz
Base station elements	1296
Base station power	33 dBm
Mobile station power	23 dBm
TDD ratio	Changeable

User throughput ratios (DL:UL)

I6G simulator

dŏcomo

Innovative applications in 6G era

Applications in 6G era

Human Augmentation through 6G NW!

Changing worlds with you.

Human augmentation

Changing worlds with you.

Human augmentation demonstration (1)

Changing worlds with you.

<u>docom</u>o

Human augmentation demonstration (2)

Changing worlds with you.

<u>dŏcom</u>o

Human augmentation demonstration (3)

Changing worlds with you.

docomo

5G Evolution & 6G powered by IOWN (Innovative Optical and Wireless Network)

5G Evolution & 6G powered by IOWN

Changing worlds with you.

dõcomo

5G Evolution and 6G mobile networks technologies can be combined with IOWN's ultra-high capacity, ultra-low latency and ultra-low power technologies based on breakthrough photonics, to further enhance the next generation ICT infrastructure, and respond to the pressing needs of society.

White paper: 5G Evolution and 6G (Ver. 4.0)

Changing worlds with you.

I	Introduction	
	Direction of Evolution "5G Evolution and 6G"	
1	1. Direction of Evolution to 5G Evolution	
	2.1.1. Considerations for 5G Evolution	
	2.1.2. 3GPP Release 17 and Release 18 Standardization Trends	
1	.2. Considerations for 6G	
1	3. Direction of further evolution through combination with IOWN	
	Requirements and Use Cases	
-	1. Extreme-high-speed and high-capacity communications	
3	.2. Extreme coverage extension	
-	3. Extreme-low power consumption and cost reduction	15
	4. Extreme-low latency	
	5. Extreme-reliable communication	
	.6. Extreme-massive connectivity & sensing	
	New Value Provision in the 6G Era	
	1. Generations of mobile communication systems and changes in the values	
	provided - From Smart to Well-being -	19
	2. Technologies worthy of attention in the 6G Era	20
1	4.2.1. Human augmentation	
	4.2.2. Brain Technologies	
	4.2.3. Perception sharing	
	4.2.4. Multilayered sensory information	
	4.2.4. Multilayered sensory information	21
	4. Potential Use Cases in the 6G Era	
	4.4.1. Examples use cases	
	4.4.1. Examples use cases 4.4.2. System configuration	
	4.4.2. System configuration Technological development and research areas	24
5		
-	1. New Radio Network Topology	
	5.1.1. Distributed antenna deployment with a "line"	
	5.1.2. Radio propagation path control by RIS	
	5.1.3. Inter-terminal coordinated transmission and reception technology	28
	5.1.4. Win-Win distributed antenna deployment with sensing and	2.2
	energy-saving communications	
-	2. Coverage extension technology including Non-Terrestrial Networks	29
-	.3. Technology for further broader frequency domain and advancement of	
	frequency utilization	32
-	.4. Further advancement of Massive MIMO and wireless transmission	
	technologies	34
-	5. Extension of Ultra-Reliable and Low Latency Communications (URLLC)	
	and industrial networks	36
-	.6. Multifunctional wireless communication systems and utilization of AI	
	technology in all areas	
	5.6.1. Wireless sensing technology in cellular network	
	5.6.2. Communication using AI avatars as endpoints	40
4	7. Integration of various wireless technologies.	
	·	

DOCOMO White Paper 5G Evolution and 6G

Original: Version 1.0 published on Jan. 24, 2020

Current: Version 4.0 published on Jan. 11, 2022

The Japanese version was released on Nov. 8, 2021

See website for details:

DOCOMO 6G White Paper

Search

Concept video: 5G Evolution & 6G powered by IOWN

Changing worlds with you.

Introducing: Renewal by combining 5G Evolution & 6G and NTT's IOWN vision

Please download this concept video:

https://www.nttdocomo.co.jp/english/corporate/technolog y/whitepaper_6g

docomo

For more information, please contact us at

mwc22_5g_evolution_and_6g-ml@nttdocomo.com